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Deep-Space Optical Communications Downlink
Budget: Modulation and Coding

B. Moision1 and J. Hamkins1

A link budget for a deep-space optical channel depends in part on the choice of
modulation format and error-control coding scheme. This article describes several
properties of the channel capacity that lead to an appropriate selection of modula-
tion format, pulse-position modulation (PPM) order, and error-control code rate.
It also describes performance limits when additional constraints—such as bounds
on average power, peak power, and uncoded symbol-error rate—are imposed. We
compare these limits to the performance of Reed–Solomon codes and convolutional
codes concatenated with PPM, and show that, when iteratively decoded, the con-
catenated convolutional codes operate approximately 0.5 dB from capacity over a
wide range of signal levels, about 2.5 dB better than Reed–Solomon codes.

I. Introduction

NASA is developing optical links to support deep-space communication to a satellite orbiting Mars at
data rates on the order of 10 to 100 Mbits/second. The maximum supportable data rate changes by an
order of magnitude as the range, atmospheric conditions, Sun-Earth-probe angle and Sun-probe-Earth
angle vary. A characterization of these conditions for the Mars link is detailed in a companion article [1].
For optimum data throughput, the modulation and coding should be correspondingly changed during a
mission. In this article, we describe the selection of coding and modulation for various operating points
and illustrate achievable user data rates.

As in [1], the transmitted signal is divided into slots of duration Ts seconds, during which a pulse may
be transmitted. For the purpose of coding and modulation design, the link may be parameterized by
the maximum average detected signal photons/pulse, Ppk, the average detected signal photons/slot, Pav,
and the average detected noise photons/slot, nb. Ppk and Pav are proportional to the peak and average
received optical signal power, respectively, and may be thought of as peak and average power constraints.
The laser transmitter may have additional constraints on the minimum and maximum separation between
transmitted pulses. Efficient signaling under these constraints is discussed in [2] and will not be considered
here.

Hence we may reduce each operating point to the triple (Pav, Ppk, nb) and determine coding and
modulation that maximize the achievable user bits/slot. Units are normalized by the slot width and
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results stated in bits/slot, which may be divided by the slot width in seconds to give bits/second. The
analysis may be repeated in a similar manner to maximize bits/(signal)photon, a measure of energy
efficiency. We choose to maximize bits/slot, a measure of time, or bandwidth, efficiency, as this is the
parameter of primary importance for links of interest—we typically have a fixed average power budget
and desire to maximize the channel throughput. Although the design procedure is analogous, a link
design that maximizes bits/photon will not necessarily maximize bits/second.

We model the channel as Poisson to simplify presentation and facilitate comparisons with known
results. More accurate models exist for particular detectors, e.g., the Webb+Gaussian model for avalanche
photodiode (APD) detectors [3] and the Polya model for photomultiplier tubes (PMTs) [4], and may be
used to provide more accurate link estimates. Much of the analysis here extends in a straightforward
manner to other models.

The optical detector output is quantized and synchronized, providing either slot counts or symbol
estimates to the channel decoder. Using this information, the decoder, which may also perform the
function of demodulation, generates estimates of the transmitted user data. The fidelity of the system
may be measured in terms of the bit-error rate (BER) at the output of the decoder, with a target typically
on the order of 10−5 to 10−6. Where relevant, link budgets in this article require a BER ≤ 10−6.

It is well-known that the deep-space optical link operates efficiently at high peak-to-average power
ratios, e.g., [5,6], which may be achieved by modulating the data using M -ary pulse-position modulation
(PPM). In PPM, each log2 M user bits map to the location of a single pulsed slot in an M -slot frame. For
most of this article, we assume the data are modulated with PPM and focus on choosing the optimum
order. In Section II.E, we illustrate the losses incurred by restricting the modulation to PPM.

The error-control code (ECC) rate is determined by the order and target bits/second. The baseline
candidate coding and modulation for the deep-space optical channel is Reed–Solomon (RS) coded pulse-
position modulation (PPM), denoted RSPPM [7]. This baseline is compared with an iteratively decoded
serial concatenation of a convolutional code and coded PPM, denoted SCPPM. We illustrate gains of
≈2.5 dB in average power using SCPPM relative to RSPPM for nb = 1.0.

The article is organized as follows. In Section II, we discuss the behavior of optical channel capacity for
a Poisson channel using PPM. We show the impact of peak and average power constraints and dead time
on capacity. In Section III, we illustrate a method to choose a modulation order and ECC code rate. In
Section IV, we demonstrate the performance of specific coded modulation schemes. In Section V, we show
how a symbol-error rate (SER) constraint affects capacity and how to trade off SER and throughput. In
Section VI, we work through a sample link design and link budget.

II. Capacity of the PPM Channel

Let Xi be the ith binary input to the optical channel, corresponding to the ith slot, where a 1 denotes
the transmission of a pulse in the ith slot and a 0 denotes no pulse. Let Yi be the corresponding output,
the number of photons detected in the ith slot. Channel uses are assumed to be conditionally independent,
i.e., for each i, j, i �= j,

fYiYj |XiXj
(yi, yj |xi, xj) = fYi|Xi

(yi|xi)fYj |Xj
(yj |xj) (1)

where fY |X(y|x) is the conditional density function of Y given X. For channel models in consideration,
fYi|Xi

(yi|0) and fYi|Xi
(yi|1) do not depend on i; hence, we will use the shorthand p0(k) = fYi|Xi

(k|0),
p1(k) = fYi|Xi

(k|1), to denote the densities for signal and non-signal slots.
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The capacity of M -ary PPM on a soft-output channel satisfying Eq. (1) is shown in Appendix A to be

C(M) =
1
M

EY1,···,YM
log2

[
ML(Y1)∑M
j=1 L(Yj)

]
bits/slot (2)

where Y1 has distribution p1(·), Yi has distribution p0(·) for all i > 1, and L(y) = p1(y)/p0(y) is the
likelihood ratio for y.

A. Poisson Channel

Let λs denote the average number of signal photons incident on the detector per second (including
both pulsed and non-pulsed periods in the average), λb the average number of noise photons incident per
second, η the quantum efficiency of the detector, Ts the slot time, and 1/M the duty cycle, the average
number of pulses transmitted per Ts. For a PPM channel, the average number of signal photons per
pulse is ns = ηλsMTs, and the average number of noise photons per slot time is nb = ηλbTs. We assume
throughout that the pulse energy is captured in a slot, so that ns also denotes the mean number of signal
photons per pulsed slot.

For the Poisson channel

p0(k) =
e−nbnk

b

k!
(3)

p1(k) =
e−(ns+nb)(ns + nb)k

k!
(4)

Let CPPM(M, ns, nb) be the capacity of the M -ary PPM Poisson channel. The behavior of the case nb = 0
is distinct, so we will carry analysis for the two cases nb = 0 and nb > 0 in parallel. When nb = 0, we
have

p0(k) =
{ 1 k = 0

0 k > 0
(5)

L(k) =
{

e−ns k = 0
∞ k > 0

(6)

and Eq. (2) collapses to

CPPM(M, ns, 0) =
log2 M

M
(1 − e−ns) bits/slot (7)

When nb > 0, we have L(k) = e−ns (1 + [ns/nb])
k, and Eq. (2) becomes

CPPM(M, ns, nb) =
log2 M

M

(
1 − 1

log2 M
EY1,···,YM

log2

[
M∑
i=1

(
1 +

ns

nb

)(Yj−Y1)
])

bits/slot (8)
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B. Properties of CPPM (M,ns,nb )

1. Asymptotic Slope and Upper Shell. Figures 1 and 2 illustrate CPPM as a function of Pav =
ns/M for backgrounds nb = 0, nb = 1, and orders M ∈ {2, 4, · · · , 2048}. Each curve has a horizontal
asymptote at log2 M/M , the limit imposed by restricting the input to M -ary PPM. In Appendix B, we
show the asymptotic slope for small ns/M in the log-log domain is 1 for nb = 0 and 2 for nb > 0, as
shown in the figures.
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Fig. 1.  Capacity for Poisson PPM channel,
C PPM (M, ns , nb  ), nb = 0, M ∈ {2, 4, . . ., 2048}.

Pav , photons/slot

10−1 10110−4 100

10−1

100

10−2

10−2

M = 2

4 8
16

32

64

128

256

512

2048

1024

10−3
10−3

 C
 P

P
M

 (
M

, n
s 

, 1
 )

Fig. 2.  Capacity for Poisson PPM channel,
C PPM (M, ns , nb  ), nb = 1.0, M ∈ {2, 4, . . ., 2048}.
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Let

CPPM(Pav, nb) = max
m

CPPM(2m, Pav · 2m, nb)

the capacity maximized over order M = 2m. CPPM(Pav, 0) and CPPM(Pav, 1) are the upper shells of the
functions in Figs. 1 and 2 and are illustrated in Fig. 3 along with CPPM(Pav, nb) for nb ∈ {0.01, 0.1, 10}.

2. Concavity. For nb = 0, we have, from Eq. (7),

∂2

∂n2
s

CPPM(M, ns, 0) = − log M

M
e−ns < 0

hence, CPPM(M, ns, 0) is concave in ns. In Appendix B, we show that limns→0(∂/∂ns)CPPM(M, ns, nb) =
0 for nb > 0. Since CPPM is non-decreasing in ns and bounded, limns→∞(∂/∂ns)CPPM(M, ns, nb) = 0.
Since the derivatives go to zero at the boundaries and CPPM is nonzero for 0 < ns < ∞, it follows that
CPPM(M, ns, nb) is not concave in ns for nb > 0. This has implications for time-sharing the channel,
discussed in Section II.D.

3. Small ns Behavior. We may obtain an estimate of CPPM for small ns by expanding
CPPM(M, ns, nb) in a Taylor series about ns = 0,

CPPM(M, ns, nb)

= CPPM(M, 0, nb) + ns lim
ns→0

∂

∂ns
CPPM(M, ns, nb) +

n2
s

2
lim

ns→0

∂2

∂n2
s

CPPM(M, ns, nb) + O(n3
s)

=
(

M − 1
2M2 ln 2

)
n2

s

nb
+ O(n3

s) (9)

≈
(

M − 1
2M2 ln 2

)
n2

s

nb
bits/slot (10)

for small ns. In Eq. (9), we used the derivation of limns→0(∂2/∂n2
s)CPPM(M, ns, nb)] given in Appendix B,

Eq. (B-1), being careful to divide by M to convert bits/symbol to bits/slot. We see from Eq. (10) that
the capacity goes as n2

s/nb. In this region, each 1-dB increase in signal power compensates for a 2-dB
increase in noise power. The dependence on slot width is shown by substituting for ns, nb in Eq. (10)
and converting units to bits/second,

CPPM(M, ns, nb) ≈
(

M − 1
2M2 ln 2

)
(ηλsMTs)2

ηλbTs

1
Ts

bits/second

=
(

M − 1
2 ln 2

)
ηλ2

s

λb
bits/second

Hence, the capacity is invariant to slot width and linear in the quantum efficiency for small ns. In this
region, we may increase the slot width for fixed M to simplify receiver implementation while paying a
negligible penalty in capacity.
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Fig. 3.  Capacity maximized over order,
C PPM (Pav , nb  ), nb ∈ {0, 0.01, 0.1, 1, 10}.
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C. Peak and Average Power Constraints

The laser transmitter will have peak and average power constraints imposed by physical limitations
and available resources. Assume the losses between the transmitter and receiver are not a function of
the pulse energy so that the peak and average transmitter power constraints may be translated into
the peak and average detected power constraints Ppk, Pav, and the peak-to-average power constraint
Ppa = Ppk/Pav is constant. Recall ns denotes the average detected photons per pulse, and 1/M the
average number of pulses per slot. For the constraints to be satisfied, we must have

ns

M
≤ Pav

ns ≤ Ppk

which imply ns ≤ min{MPav, Ppk}. Ppa divides PPM orders into two regions. If M ≤ Ppa, then ns ≤
MPav ≤ Ppk, and the channel is average power constrained. If M > Ppa, then ns ≤ Ppk ≤ MPav, and
the channel is peak power constrained. Since the capacity is non-decreasing in ns, we choose ns = MPav

for M ≤ Ppa and ns = Ppk for M > Ppa. We argue that the capacity maximizing PPM order for a given
(Pav, Ppk, nb) always satisfies M ≤ Ppa, i.e., that we always operate in the average-power-constrained
region.

Assume Ppa is a power of 2, let M∗ = Ppa, and choose M > M∗. Then for both M and M∗ we have
ns = Ppk. The following result shows that the capacity is strictly smaller by choosing the larger order in
a certain region.

Result 1. If C(M) ≥ 1/M , then C(M) ≥ C(2M).

Proof. Suppose C(M) ≥ 1/M . For the memoryless PPM channel, Eq. (2) yields
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C(2M) =
1

2M
E log2

2ML(Y1)∑2M
j=1 L(Yj)

≤ 1
2M

E log2

2ML(Y1)∑M
j=1 L(Yj)

=
1
2

(
1
M

+ C(M)
)

≤ C(M) ❐

If the above result holds for the entire range of C(M), then the capacity maximizing M is always no
larger than the peak-to-average power ratio. We conjecture (as confirmed by numerical results, and easily
shown to hold for nb = 0) this holds for CPPM(2k, ns, nb).

Conjecture 1. For integer k > 2, CPPM(2k, ns, nb) is monotonically decreasing in k.

Assuming the conjecture holds, peak and average transmitter constraints impose an effective or-
der constraint M ≤ Ppa. This can be seen as follows. If there is a signaling scheme with average
photons per pulse ns and duty cycle 1/M that meets the peak and average power constraints, then
ns ≤ min{MPav, Ppk}. If M > Ppa (and Ppa is a power of 2), then by the conjecture we can increase the
capacity by reducing M to M = Ppa, without violating the power constraints.

D. The Impact of Dead Time

A Q-switched laser works well with the PPM format because it can successfully confine a large pulse
energy to a narrow slot, e.g., [8,9]. One side effect of Q-switched lasers, however, is a required delay, or
dead time, between pulses, during which the laser is recharged. We denote the dead-time duration by
the integer d, which represents the number of slots of dead time. PPM may be modified to satisfy a
dead-time constraint by following each frame with a period during which no pulses are transmitted.

Adding dead time is a special case of time-sharing the channel by transmitting more than one pulse
energy. For fixed M and average power, one can transmit pulses with ns = ns1 a fraction (1 − α) of the
time and ns = ns2 a fraction α of the time, so long as αns2 + (1 − α)ns1 = PavM . Dead time represents
the special case ns1 = Pav(M + d), ns2 = 0, α = d/(M + d). If the capacity is not concave in Pav, then
there are regions where time-sharing will gain over using a single value of ns.

For fixed M and ns, adding a dead time of d slots decreases the capacity by a factor of M/(M + d).
However, for the same average power Pav, adding a dead time of d slots allows an increase in ns from PavM
to Pav(M +d)—assuming this does not violate a peak power constraint. Alternatively, with ns fixed, the
average power is decreased by a factor of M/(M + d). Hence, for each point (photons/slot,bits/slot) =
(Pav, CPPM(M, PavM, nb)) achievable with PPM, there exists a family of points (photons/slot,bits/slot) =
(PavM/(M + d), CPPM(M, PavM, nb)M/(M + d)) achievable by adding dead time. In a log-log domain
plot of average power versus capacity, this is represented by extending each point on the CPPM versus
Pav curve down and to the left with a line of slope 1.

As shown in Section II, CPPM(M, ns, nb) is concave in ns for nb = 0, but not for nb > 0. It follows
that there are regions where time-sharing will increase the capacity for nb > 0, for which dead time is
one case (time-sharing will not increase capacity when nb = 0). We will see that adding dead time will
increase the capacity for moderate-to-low average power when nb > 0. Let
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Cd(M, Pav, nb) = max
d

{
CPPM(M, ns, nb)

M

M + d

∣∣∣∣ ns = Pav(M + d)
}

the capacity maximized over dead time d, illustrated in Fig. 4 for M = 64. Cd is equal to CPPM for Pav

above the point where the tangent of CPPM has slope 1, and equal to that tangent below that point. We
conjecture that CPPM has a single inflection point as a function of ns. The implication of this is that the
optimum capacity under time-sharing is always achieved by using dead time as one of the time-shared
operating points (or no time-sharing).
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Fig. 4.  Achievable rates for M = 64, nb = 1, with and without
dead time.

Cd (64, Pav , 1)

C PPM (64, Pav M, 1)

E. Suboptimality of PPM

What loss is incurred by restricting the modulation to PPM? PPM is essentially a binary modulation
code with duty cycle 1/M and a single pulse (binary 1) in each (synchronized) window of M slots. Suppose
we were to replace PPM with a binary modulation code with duty cycle 1/M but no constraint on the
distribution of pulses. What gains are available by allowing an arbitrary pulse distribution?

The capacity of a memoryless Poisson channel with input restricted to duty cycle 1/M is

COOK(M, ns, nb) =
1
M

EY log
fY |X(Y |0)

fY (Y )
+

1
1 − 1/M

EY log
fY |X(Y |1)

fY (Y )

where fY |X(y|0), fY |X(y|1) are given by Eqs. (3) and (4), and

fY (y) =
1
M

fY |X(y|0) +
M − 1

M
fY |X(y|1)

is the probability mass function for a randomly chosen slot.
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Figures 5 and 6 illustrate COOK(M, ns, nb) for backgrounds nb = 0, nb = 1 and M a power of 2.
Let h(p) be the entropy function, h(p) = p log2(1/p) + (1 − p) log2(1/(1 − p)). COOK(M, ns, nb) has a
horizontal asymptote at h(1/M), the limit imposed by restricting the input to duty cycle 1/M . The duty
cycle may be any positive real value, the restriction to powers of 2 being an artifice for comparison with
PPM orders. Let

COOK(Pav, nb) = max
M

COOK(M, Pav, nb)

the capacity maximized over real-valued order M , illustrated in Fig. 7 for nb ∈ {0, 0.01, 0.1, 1, 10}.

Fig. 5.  Capacity for duty-cycle constraint,
C OOK (M, ns , nb  ), nb = 0, M ∈ {2, 4, . . ., 2048}.
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Fig. 6.  Capacity for duty-cycle constraint,
C OOK (M, ns , nb  ), nb = 1.0, M ∈ {2, 4, . . ., 2048}.
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Fig. 7.  Duty-cycle-constrained capacity maximized over order,
C OOK (Pav , nb  ), nb ∈ {0, 0.01, 0.1, 1, 10}.
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Figure 8 illustrates COOK(Pav, nb)/CPPM(Pav, nb), the potential gain in using an arbitrary duty-cycle
constraint relative to PPM. The gains are larger for high average power, corresponding to small PPM
orders, and for smaller background noise levels. We can potentially double the capacity for moderate-to-
high average power. We note, however, that in this discussion we have not specified codes that achieve
arbitrary duty cycles. There are systematic methods to construct such codes, e.g., [10], but we will not
explore their use here. We illustrate results of Fig. 8 to demonstrate regions where their use should be
explored. In the remainder of the article, we discuss results for PPM.

III. Parameter Selection

We may operate close to capacity by choosing the optimum PPM order for the desired bits/slot and
concatenating the PPM mapping with an error-correction code (ECC) so that the decoded BER satisfies
some threshold. The optimal order and ECC rate vary with ns and nb. To optimize the throughput over
the course of a mission requires choosing a set of modulation orders and corresponding ECCs.

A. PPM Order

In the absence of a peak power constraint, we choose to use the capacity-maximizing PPM order,

M∗(Pav, nb) = 2arg maxm CPPM(2m,MPav,nb)

illustrated in Fig. 9 for nb ∈ {0, 0.01, 0.1, 1.0, 10}. Discontinuities correspond to switching the order and
are shown as vertical lines. M∗ increases with increasing nb, showing that as the channel becomes worse,
an efficient use of the channel increases the peak pulse power. Similarly, M∗ decreases with Pav.

We may also characterize the optimal duty cycle for an input not constrained to use PPM, as discussed
in Section II.E. The corresponding optimal duty cycle,

M∗
OOK(Pav, nb) = arg max

M
COOK(M, MPav, nb)

is illustrated in Fig. 10.
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Fig. 8.  Relative loss due to using PPM,
C OOK  (Pav , nb  ) / C PPM (Pav , nb  ), nb ∈ {0, 0.01, 0.1, 1.0, 10}.
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Fig. 9.  Optimal PPM order,
M* (Pav , nb  ), nb ∈ {0, 0.01, 0.1, 1.0, 10}.
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B. Error-Control Code Rate

We choose the ECC code rate to satisfy

RPPM(Pav, nb) ≈
CPPM(Pav, nb)M∗(Pav, nb)

log2 M∗(Pav, nb)

Figure 11 illustrates the ECC rate as a function of average power for several background levels. The
discontinuities, corresponding to switching the order, obscure the general behavior, which is more clearly
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Fig. 10.  Optimal real-valued duty cycle,
M*OOK (Pav  , nb  ), nb ∈ {0, 0.01, 0.1, 1.0, 10}.
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Fig. 11.  PPM ECC rates, R PPM (Pav , nb  ), nb ∈ {0, 0.1, 10}.
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illustrated in Fig. 12 for the duty-cycle-constrained case. The average ECC rate generally increases as
the background level increases.

As the average power available increases, the optimal PPM order decreases, switching from order 2M
to order M at the intercept of the corresponding capacity curves. In the noiseless case, this intercept,
where CPPM(M, ns, 0) = CPPM(2M, 2ns, 0), occurs at ñs = log (log2(2M)/ log2(M/2)), CPPM(ñsM, 0) =
2 log2 M/(M log2(2M)), with a corresponding discontinuity in the ECC rates, RPPM(ñsM, 0) =
CPPM(ñsM, 0)M/ log2(M) = 2/(1 + log2 M), RPPM(ñs2M, 0) = CPPM(ñs2M, 0)2M/ log2(2M) =
4 log2 M/(log2(2M))2, which indicates the range of rates used in the noiseless case.
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Fig. 12.  Duty-cycle-constrained ECC rates,
R OOK (Pav , nb  ), nb ∈ {0, 0.01, 0.1, 1.0, 10}.

Pav

10−1 10110−4 100

0.9

 E
C

C
 R

A
T

E

nb = 0

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
10−210−3

0.01

0.1

1.0

10

The behavior of the ECC rate is obscured in Fig. 11 due to switching of the order. The behavior of the
rate can be seen more clearly by considering the duty-cycle-constrained case, which allows any real-valued
duty cycle. The capacity and duty cycle may be used to specify an ECC data rate with

ROOK(Pav, nb) =
COOK(Pav, nb)

h

(
1

M∗
OOK(Pav, nb)

)

illustrated in Fig. 12 for nb ∈ {0, , 0.01, 0.1, 1, 10}.

IV. Coded Performance—Gap to Capacity

Figure 11 shows that a broad range of ECC rates may be required to support various operating points.
We evaluated two classes of codes to support the required rates. A class of soft-decision iterative codes
and a class of hard-decision Reed–Solomon codes.

The two classes of decoders require different receiver/demodulators. Soft-decision decoders nominally
require slot counts for each slot, although the complexity may be mitigated by using a subset of the
slot counts [11]. The receiver does not make preliminary PPM symbol decisions, but passes on slot
counts to the decoder. The soft-decision algorithm is initialized by using the slot counts to determine
the probability of each candidate PPM symbol. A receiver for a hard-decision decoder is initialized with
estimates of each PPM symbol, which may be determined by the receiver, but no explicit slot counts.
Hard-decision receiver/decoders are generally less complex than their soft-decision counterparts, but have
worse performance. To quantify the performance–complexity trade-off, we consider both classes.

A. Hard-Decision Decoded Codes

With hard-decision decoders, the minimum distance and, to a lesser degree, the number of nearest
neighbors are the critical parameters. Reed–Solomon (RS) codes are optimal hard-decision codes in that
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they have the largest minimum distance (Hamming distance between code symbols) for any code with
the same rate, block length, and field order.

An (n, k) RS code (rate R = k/n) is conventionally tailored to fit an M -ary PPM channel by choosing
RS code symbols from GF (M) and using n = M−1, so that there is a one-to-one correspondence between
PPM symbol errors and code-word symbol errors [7]. However, by following this convention, small PPM
orders imply short block lengths, and codes for small n perform poorly and have less flexibility in choosing
the rate (with M = 4, this convention would yield the small class of (3, k)RS codes). Instead, we design
an RS code to be used in conjunction with M -PPM by grouping together β M -PPM symbols to form
an element of GF (Mβ). The RS code is then taken to be an (n, k) = (Mβ − 1, k) code. The optimum
choice of β will be a function of the target bit-error rate. We refer to the concatenation of an RS code
with PPM formed in this manner as an RSPPM(n, k, M) code.

Figure 13 shows the performance of rate ≈ 3/5 RSPPM with M = 64 for β ∈ {1, 2, 3}, along with
soft-decision capacity of rate 3/5 coded 64-PPM. We would conventionally use the RSPPM(63, 37, 64)
code, which matches 64-PPM, but the RSPPM(26143, 15685, 64) code does 0.41 dB better at a BER
of 10−5. As the block length increases, the waterfall region is seen to move slightly to the right and
to get steeper, so that the optimal β is a function of the target BER. For example, with 64-PPM and
a target BER of 10−5, RSPPM(26143, 15685, 64) outperforms the smaller RSPPM(4095, 2457, 64) and
RSPPM(63, 37, 64) codes as well as the larger RSPPM(16777215, 10066329, 64) code. For small orders of
PPM, using RSPPM codes with long block lengths can result in multiple-dB gains over RS codes matched
to the PPM size.

B. Iterative Soft-Decision Decoders

Two sub-classes of iterative codes should be used for the optical channel, one for the region of very
small nb (approximate range 0 ≤ nb ≤ 0.1) and one for moderate-to-large nb (approximate range
nb > 0.1). For moderate-to-large nb, the performance of the codes is dominated by the number of
nearest neighbors—the distance distribution. In this region, we propose to use the serially concate-
nated codes described here. For very small nb, the channel behaves more like an erasure channel
(for nb = 0, it reduces to an erasure channel) and is dominated by shot noise. In this region, the
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Fig. 13.  Performance of rate ~ 3/5 RSPPM, M = 64.~
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minimum distance of the code dominates performance, and we propose to use low-density parity-check
codes with good distance properties, e.g., [12].

Our current case of interest is in the moderate-to-high background noise region. We propose the use of
iterative codes for this region that are composed of a serial concatenation of a small memory convolutional
code, a bit interleaver, a recursive rate-1 accumulator, and mapping to PPM symbols. The iterative codes
are described in more detail in [2,11]. We refer to the codes as SCPPM(R, m, M,Π), where R, m are the
convolutional code rate and memory, M is the PPM order, and Π is the bit-interleaver length. The
convolutional code is treated as an outer code and the accumulator and PPM mapping as an inner code,
the pair being decoded iteratively following the description in [13]. For convolutional codes with rates
above 1/2, we decode using the dual of the code, e.g., [14], to reduce complexity.

The BER performance of an SCPPM code may be improved up to a point by increasing the interleaver
size, using a designed interleaver and optimizing over choice of convolutional code. We note that the
convolutional codes considered have small memory—typically 2 or 3—and, hence, low-complexity encoders
and decoders.

V. Symbol-Error Rates, Receiver Losses

The performance of the iterative error-correcting codes described in Section IV.B theoretically allow
operation at signal powers within a fraction of a dB of capacity. However, this assumes no losses in
the receiver—i.e., perfect synchronization and no loss due to quantization. In a link-budget analysis, we
need to incorporate losses due to using a non-ideal receiver. Quantization loss may be kept negligibly
small by choosing a sufficient number of levels, albeit at increasing complexity costs. We anticipate 5- to
6-bit quantization of likelihood ratios will be sufficient to ensure negligible degradation [15]. However,
synchronization at operating points within a fraction of a dB of capacity may be infeasible and become
the weak link in the receiver. Synchronization depends on the ability to correctly resolve a signal pulse
location, which we may characterize in terms of the uncoded symbol-error rate (SER). If the synchroniza-
tion loss is excessive, we may switch to a PPM order larger than optimal, sacrificing bits/slot for a higher
energy pulse and, hence, more reliable estimates of pulse positions. In this section, we address methods
to decrease synchronization losses by changing the modulation, trading off data rate for lower SERs.

The maximum-likelihood symbol decision chooses the PPM symbol corresponding to the maximum
slot count, with probability of error [16]

SER(M, ns, nb) =
1 − 1

M
e−(ns+Mnb) +

∞∑
j=1

(ns + nb)j

j!
e−(ns+nb)

[
j−1∑
m=0

nm
b

m!
e−nb

]M−1
1

ajM

[
(1 + aj)M − 1

]
M − 1

where

aj =

nj
b

j!∑j−1
m=0

nm
b

m!

This can be simplified to

SER(M, ns, nb) = 1 −
∞∑

j=0

e−ns

M

(
1 +

ns

nb

)j (
bM
j+1 − bM

j

)
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where

bj =
j−1∑
m=0

nm
b

m!
e−nb

Recall M∗(Pav, nb) denotes the optimal order and let

n∗
s(Pav, nb) = PavM∗(Pav, nb)

the corresponding mean signal photons per signal slot. Figure 14 illustrates SER(M∗, n∗
s, nb) as a function

of Pav for nb = 0, 0.1, and 10. Discontinuities due to switching orders are illustrated as vertical lines.
For high Pav, the uncoded performance is very good—so good in fact that little or no coding is required.
However, over a broad range of interest, we would, without other constraints, choose to operate with
uncoded SERs above 0.1. It is the low Pav regime that causes timing losses. The uncoded SER at low
average powers may be as high as 0.6. The high SER may be significantly aggravated by peak power
constraints, which restrict the maximum achievable order.

A. Trading SER for Throughput, Unconstrained Order

What loss is incurred by adding a constraint on the SER? Assume there is no order constraint—no
peak power transmitter constraint, so we may vary ns and M as long as ns/M = Pav. In this case, we
may lower the uncoded SER by increasing M and ns relative to M∗ and n∗

s, trading off SER for data
rate. Let

CSER(Pav, nb, α) = max
m

{CPPM(2m, ns, nb)|ns = Pav2m,SER(2m, ns, nb) < α}

the capacity of the PPM channel constrained to have SER less than α. Figure 15 illustrates CSER

(Pav, 1.0, α) for α ∈ {1, 0.1, 0.01}, and Fig. 16 illustrates the corresponding SERs.
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Fig. 15.  SER-constrained PPM capacity,
CSER (Pav , nb , α  ), nb = 1.0, α  ∈ {1, 0.1, 0.01}.
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Fig. 16.  SER corresponding to
CSER (Pav , nb , α  ), nb = 1.0, α  ∈ {1, 0.1, 0.01}.
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Discontinuities occur at the point where we switch orders and are illustrated as vertical lines. The
curve may be smoothed by time-sharing PPM orders, i.e., we may use order M1 a fraction β of the time
and order M2 a fraction (1 − β) of the time. This yields achievable capacities

C∗
SER(Pav, nb, α) = max

M1,M2,β
{βCPPM(M1, Pav,1M1, nb) + (1 − β)CPPM(M2, Pav,2M2, nb)|

Pav = βPav,1 + (1 − β)Pav,2,SER(M1, Pav,1M1, nb) < α,SER(M2, Pav,2M2, nb) < α} (11)

the concave hull of Fig. 15, illustrated in Fig. 17. Figure 18 shows the corresponding SERs. Time-sharing
PPM orders allows all real-valued duty cycles, filling in the discontinuities due to switching orders. In
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Fig. 17.  SER-constrained time-sharing PPM capacity,
C SER (Pav , nb , α ), nb = 1.0, α ∈ {1, 0.1, 0.01}.
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Fig. 18.  SER corresponding to,
C SER (Pav , nb , α ), nb = 1.0, α ∈ {1, 0.1, 0.01}.
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Eq. (11), we time-share points that individually satisfy the SER constraint. This may be extended by
time-sharing points such that the mean SER satisfies the constraint. We do not treat that problem here.

Data rates for nb = 1.0 are up to 16 percent lower over the range illustrated than the unconstrained
channel for SER < 0.1, and up to 38 percent lower for SER < 0.01. The losses incurred by satisfying
an SER constraint generally will be smaller for small nb, as the optimum operating points at small nb

correspond to generally lower SERs. Figures 11 and 12 show the optimum ECC rate is generally higher
for larger nb, corresponding to lower SERs for the same BER.

Time-sharing PPM orders may be impractical to implement. Similar performance may be obtained
by using integer PPM orders, or time-sharing with dead time. Adding dead time also provides a periodic
non-pulsed synchronization marker that may be used to aid in symbol-timing recovery. Pulses may be
located in the dead-time windows to denote frame or packet timing.
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B. Trading SER for Throughput, Order Constrained

If the system is peak power constrained, so that using a higher order and the same average power does
not lower the SER, we may choose a smaller PPM order and add a dead time, a period during which no
pulse may be fired, between frames. This will shorten the window over which noise is observed, increasing
the probability of resolving a pulse. This is less efficient than increasing the peak power and results in
more substantial losses.

VI. Required Power for Specified Data Rate

In this section, we run through a sample code and modulation design and link budget calculation.

Suppose we have a system with a slot width of 1 ns and background noise nb = 1.0. We would
like to find the power required to achieve 56 Mb/s and choose appropriate coding and modulation.
From Fig. 2, we find the optimum PPM order to achieve this data rate is M = 64, and the minimum
required ns/M = 0.0541. To achieve 56 Mb/s, we choose a rate R = 0.6 ≈ 0.056/(log2(M)/M) ECC
and concatenate it with 64-PPM. The performance of two candidate ECCs for this operating point,
SCPPM(3/5, 2, 64, 16410) and RSPPM(4095, 2457, 64), are illustrated in Fig. 19. Their performance may
be compared with capacity for 56 Mb/s and the uncoded M = 64 performance, which, since it carries
no coding redundancy, yields 94 Mb/s. The SCPPM code operates 0.5 dB from capacity, the RS code
operates 2.5 dB from capacity, and uncoded PPM 7.2 dB from capacity (at 56 Mb/s). An appropriate
comparison for uncoded 64-PPM is with capacity for 94 Mb/s, from which uncoded performance is 4.7 dB.
(It would be more efficient to achieve 94 Mb/s with a rate 3/5 code mapped to 32-PPM).

These comparisons may be extended over a range of desired rates. Figure 20 illustrates achievable
rates for nb = 1 populated by points corresponding to the class of SCPPM codes, the class of RSPPM
codes, and uncoded PPM. The coded and uncoded channels are evaluated at a finite number of rates,
which we connect in a line for illustration—or by allowing time-sharing. The point RSPPM corresponding
to M = 64 shows a cluster of points corresponding to the codes illustrated in Fig. 13. Other RSPPM
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Fig. 19.  Performance of SCPPM (3/5, 2, 64, 16410),
RSPPM (4095, 2457, 64), nb = 1.0.
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Fig. 20.  Sample operating points, nb  = 1.
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points use the convention n = M − 1 to illustrate the degradation in performance relative to capacity by
using this convention for small M . Points correspond to the average power at which the BER is 10−5.
We exclude iterative codes that exhibit error floors at BERs greater than 10−6.

The class of SCPPM codes lies approximately 0.5 dB from capacity, while the class of RSPPM codes
lies approximately 2.75 dB from capacity, and uncoded performance is 4.7 dB from capacity. These
gaps will vary with nb but provide a good approximation over a range of expected background noise
levels. For a conservative link-budget calculation that does not require the design and evaluation of a
specific code, we assess a loss of 0.75 dB relative to capacity for iterative codes, 3.0 dB for RS codes, and
5.0 dB for uncoded. Although large SERs may make conventional data-aided timing recovery difficult,
we anticipate synchronization losses may be kept sufficiently small with non-data-aided timing-recovery
algorithms, even at average powers close to capacity. For the purpose of constructing link budgets, we
assess a conservative 1-dB loss for all operating points due to quantization and synchronization losses.
A robust system design should also incorporate a margin above the minimum requirement, which we
will take to be 3.0 dB. From these approximations, we may obtain achievable data rates as a function
of average power and background noise, or the required average power for a specified data rate. To a
rough approximation, the achievable data-rate-versus-average-power curve (including receiver losses and
margin) would be given by the capacity curve shifted by 4.75 dB for iterative codes, 7.0 dB for RS codes,
and 9.0 dB for the uncoded case.
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Appendix A

Capacity of the PPM Channel: General Form

The PPM modulator can be viewed as an encoder producing the M = 2k codewords {x1, · · · ,xM}
of a (2k, k) orthogonal code, where xj is a vector of length M containing a one in the jth position.
Let X = (X1, · · · , XM ) be a PPM symbol drawn according to density fX, and Y = (Y1, · · · , YM ) the
corresponding vector received over a discrete-time channel. We assume the optical channel is memoryless,
so that

fY|X(y |x) =
M∏
i=1

fYi|Xi
(yi|xi)

We assume fYi|Xi
(yi|0) and fYi|Xi

(yi|1) do not depend on i; hence, we will use the shorthand p0(k) =
fYi|Xi

(k|0), p1(k) = fYi|Xi
(k|1), to denote the densities for signal and non-signal slots. It follows that

fY|X(y |x) = p1(yj)
M∏

i=1,i �=j

p0(yi) (A-1)

where j is the index of the non-zero element of x.

The capacity of a channel transmitting X and receiving Y is given by the maximum mutual information
between X and Y,

C = max
fX

I (X;Y) bits per PPM symbol

= max
fX

H(Y) − H(Y|X)

= max
fX

H(Y) −
M∑

j=1

fX(xj)H(Y|X = xj) (A-2)

where H(·) is the entropy function. From Eq. (A-1), it follows that H(Y|X = xj) is not a function of
xj and that H(Y) is maximized with an equiprobable distribution on X, i.e., fX (xj) = 1/M for all j.
Thus,

C =
∫

RRM
fY|X (y|x1) log2


 fY|X (y|x1)

1
M

∑M
k=1 fY|X (y|xk)


 dy bits per PPM symbol (A-3)

The term in parentheses in Eq. (A-3) can be expressed as

fY|X (y|x1)
1
M

∑M
k=1 fY|X (y|xk)

=
Mp1(y1)

∏M
i=1,i �=1 p0(yi)∑M

j=1 p1(yj)
∏M

i=1,i �=j p0(yi)
=

ML(y1)∑M
j=1 L(yj)
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where L(y) �= p1(y)/p0(y) is the likelihood ratio of receiving statistic y. Thus, the capacity in Eq. (A-3)
can be rewritten in terms of the likelihood ratios of the M slot statistics:

C = E log2

[
ML(Y1)∑M
j=1 L(Yj)

]
bits per PPM symbol (A-4)

where the expectation is taken over Y, with Y1 having pdf p1(·) and Yj having pdf p0(·), j > 1. Note
that, as expected, Eq. (A-4) gives a capacity near log2 M bits per PPM symbol when the channel is high
quality and the likelihood ratio of Y1 dominates the sum of the other likelihood ratios.

In principle, the capacity formula in Eq. (A-4) can be computed as long as the statistics p0(·) and
p1(·) governing the binary-input channel are known. However, an uninspired computation of the expec-
tation over Y requires evaluation of an M -dimensional integral. A low-complexity method to compute
the expectation is to generate a random vector sample Y = (Y1, · · · , YM ), where Y1 has pdf p1(·) and
Y2, · · · , YM each has pdf p0(·); then evaluate the logarithmic function inside the expectation for the vector
sample thus generated, and average the computed logarithm over many such samples. This Monte Carlo
method was the most practical method to calculate numerical capacities.
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Appendix B

Asymptotic Behavior of CPPM (M,ns,nb )

This appendix derives the asymptotic slope of the capacity of M -ary PPM on a Poisson channel. On
a log-log plot of capacity versus average signal photons per pulse, the slope is shown to be 1 when no
background is present and 2 when background is present.

Equations (7) and (8) correctly indicate that capacity approaches zero as ns → 0. We aim to determine
the rate of its approach toward zero, as seen on a log-log plot. To simplify notation in determining the
behavior of CPPM as a function of ns, write C(ns) = MCPPM(M, ns, nb) for fixed M and nb.

We wish to determine limns→0(d log C/du), where u = log ns. Stating explicitly the dependence of
capacity on ns, we may write

d log C(ns)
du

=
C ′(ns)
C(ns)

· dns

du
=

C ′(ns)ns

C(ns)

This leads immediately to the following observation.

Observation B-1. Let C(ns) = a0 + a1ns + · · · + annn
s + o(nn

s ) be the Taylor series expansion of
C(ns) about ns = 0, and let u = log ns. If k is the smallest non-negative integer k such that ak �= 0, then
limns→0[d log C(ns)/du] = k.

When nb = 0, from Eq. (7) we have C(ns) = 0 + (log2 M)ns + o(ns), and the following result.

Theorem B-1. For M -PPM signaling on a Poisson channel with non-signal slot-count average nb = 0
and signal slot-count average ns, the asymptotic log-log slope of capacity, limns→0[d log C(ns)/d(log ns)],
equals 1.

Next, we consider the case nb > 0. To simplify the taking of derivatives, we define

f(ns) ≡
M∑
i=1

(
1 +

ns

nb

)(Yi−Y1)

g(ns) ≡ log2 f(ns)

h(ns) ≡ p1(y1) =
e−(ns+nb)(ns + nb)y1

y1!

It follows that

f ′(ns) =
M∑
i=1

(Yi − Y1)
(

1 +
ns

nb

)(Yi−Y1−1) 1
nb

f ′′(ns) =
M∑
i=1

(Yi − Y1)(Yi − Y1 − 1)
(

1 +
ns

nb

)(Yi−Y1−2) 1
n2

b
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Thus, f(0) = M , f ′(0) = (1/nb)
∑M

i=2(Yi − Y1), EY1,···,YM
f ′(0) = 0, f ′′(0) = (1/n2

b)
∑M

i=2(Yi − Y1)
(Yi − Y1 − 1), and

EY1,···,YM
f ′′(0) = EY1,···,YM

1
n2

b

M∑
i=2

[Y 2
i − 2YiY1 + Y 2

1 − (Yi − Y1)]

=
M − 1

n2
b

(
(nb + n2

b) − 2nbnb + (nb + n2
b) − 0

)

=
2(M − 1)

nb

Also, g′(ns) = f ′(ns)/(f(ns) ln 2), and g′′(ns) = (f(ns)f ′′(ns) − f ′(ns)2)/(f(ns)2 ln 2). Finally, we note
that

h′(ns) =
(

y1

ns + nb
− 1

)
h(ns)

h′′(ns) =

(
−y1

(ns + nb)2
+

(
y1

ns + nb
− 1

)2
)

h(ns)

Using these definitions, we may write

C(ns) = log2 M − EY1,···,YM
g(ns)

= log2 M − EY2,···,YM

{
EY1g(ns)

}

= log2 M − EY2,···,YM

∞∑
y1=0

g(ns)

∣∣∣∣∣
Y1=y1

h(ns)

where in the second step we used the fact that Y1 is independent of Y2, . . . , YM , and in the last step g(ns)
is evaluated at Y1 = y1 (notation is dropped in the following). It follows that

C ′(ns) = −EY2,···,YM

∞∑
y1=0

g′(ns)h(ns) + g(ns)h′(ns)

= −EY2,···,YM

∞∑
y1=0

(
g′(ns) + g(ns)

(
y1

ns + nb
− 1

))
h(ns)

= −EY1,···,YM

[
g′(ns) + g(ns)

(
Y1

ns + nb
− 1

)]

= −EY1,···,YM

[
f ′(ns)

f(ns) ln 2
+ log2 f(ns)

(
Y1

ns + nb
− 1

)]
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From the above, it follows that limns→0 C ′(ns) = 0. Proceeding to the second derivative,

C ′′(ns) = − EY2,...,YM

∞∑
y1=0

(
g′′(ns)h(ns) + 2g′(ns)h′(ns) + g(ns)h′′(ns)

)

= − EY1,···,YM

[
f(ns)f ′′(ns) − f ′(ns)2

f(ns)2 ln 2
+ 2

f ′(ns)
f(ns) ln 2

(
Y1

ns + nb
− 1

)

+ log2 f(ns)

(
−Y1

(ns + nb)2
+

(
Y1

ns + nb
− 1

)2
)]

Note that

lim
ns→0

E

[
−Y1

(ns + nb)2
+

(
Y1

ns + nb
− 1

)2
]

=
−nb

n2
b

+ E

[
Y 2

1

n2
b

− 2Y1

nb
+ 1

]
= − 1

nb
+

nb + n2
b

n2
b

− 2 + 1 = 0

Also,

E
[
f ′(0)2

]
=

1
n2

b

E


(

M∑
i=2

(Yi − Y1)

)2

 =

1
n2

b

E


 M∑

i=2

M∑
j=2

(Yi − Y1)(Yj − Y1)




=
1
n2

b

E


 M∑

i=2

M∑
j=2

(
YiYj − YiY1 − YjY1 + Y 2

1

) =
1
n2

b

[
(M − 1)2nb + (M − 1)(M − 2)nb

]

=
M(M − 1)

nb

where in the second to last step we partitioned the double summation into the part where i = j and
where i �= j. From the above, it follows that

lim
ns→0

C ′′(ns) = −
M

2(M − 1)
nb

− M(M − 1)
nb

M2 ln 2
− lim

ns→0

2
Mnb ln 2

EY1,···,YM

[
M∑
i=2

(Yi − Y1)
(

Y1

nb
− 1

)]

= − M − 1
Mnb ln 2

− 2
Mnb ln 2

· (M − 1)
(

nb − nb −
nb + n2

b

nb
+ nb

)

=
M − 1

Mnb ln 2
(B-1)

�= 0
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This establishes the following.

Theorem B-2. For M -PPM signaling on a Poisson channel with non-signal slot-count average
nb > 0 and signal slot-count average nb+ns, the asymptotic log-log slope of capacity, limns→0[d log C(ns)/
d(log ns)], equals 2.
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